Simplified solution to determination of a binary orbit
نویسندگان
چکیده
Received ; accepted – 2 – ABSTRACT We present a simplified solution to orbit determination of a binary system from astrometric observations. An exact solution was found by Asada, Akasaka and Kasai by assuming no observational errors. We extend the solution considering observational data. The generalized solution is expressed in terms of elementary functions, and therefore requires neither iterative nor numerical methods.
منابع مشابه
Determination of the best-fitting reference orbit for a LEO satellite using the Lagrange coefficients
Linearization of the nonlinear equations and iterative solution is the most well-known scheme in many engineering problems. For geodetic applications of the LEO satellites, e.g. the Earth’s gravity field recovery, one needs to provide an initial guess of the satellite location or the so-called reference orbit. Numerical integration can be utilized for generating the reference orbit if a satelli...
متن کاملAn exact solution to determination of an open orbit
We present an exact solution of the equations for orbit determination of a two body system in a hyperbolic or parabolic motion. In solving this problem, we extend the method employed by Asada, Akasaka and Kasai (AAK) for a binary system in an elliptic orbit. The solutions applicable to each of elliptic, hyperbolic and parabolic ∗Email: [email protected]
متن کاملMulti-Observations Initial Orbit Determination based on Angle-Only Measurements
A new approach with the ability to use the multiple observations based on the least square approach has been proposed for initial orbit determination. This approach considers the Earth’s Oblateness by using the developed Lagrange coefficients. The efficiency of the proposed method has been tested in two scenarios. The first scenario is to use the simulated and the second one is to utilize the r...
متن کاملAn exact method for orbit determinations of an astrometric binary
Here we present an exact method for orbit determinations of an astrometric binary for which the primary star can be seen but the companion is unseen like a black hole or an extra-solar planet. Since the laws of the motion of celestial objects were discovered by Kepler in the seventeenth century, many attempts have been made to solve a fundamental problem of how to determine the orbital elements...
متن کاملHigh Accuracy Relative Motion of Spacecraft Using Linearized Time-Varying J2-Perturbed Terms
This paper presents a set of linearized equations was derived for the motion, relative to an elliptical reference orbit, of an object influenced by J2 perturbation terms. Approximate solution for simulations was used to compare these equations and the linearized keplerian equations to the exact equations. The inclusion of the linearized perturbations in the derived equations increased the high ...
متن کامل